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Helical instabilities of slowly divergent jets 
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The inviscid spatial growth of spiral modes of circular, slowly diverging jets is analysed. 
A multiple-scales expansion is used to develop a linear stability study for non- 
axisymmetric disturbances of arbitrary helicity . The numerical evaluation is restricted 
to axisymmetric modes and to the first two helical modes. It is shown that in the 
case of comparatively high values of the Strouhal number the modes exhibit a very 
rapid growth and reach their maximal amplification after a short distance, the axi- 
symmetric instabilities being excited more strongly than their spiral counterparts. 
Contrary to this, the modes grow comparatively slowly in the case of smaller values 
of the Strouhal number and exhibit their maximal amplification further downstream. 
In the latter case the first spiral mode is more unstable than the axisymmetric one. 
A comparison with experiments seems to support these results. 

1. Introduction 
Mainly because of the investigation of jet noise, a great number of studies deal 

with the problem of jet instability and turbulence. Experimental research by Crow 
& Champagne (1971) showed that the natural frequency pn gives the Strouhal number 
St = PnR/nUo (R is the jet radius and U, the centre-line velocity) at  the jet centre- 
line a value of 0.3. Using comparatively high forcing levels, they found that the 
axisymmetric mode reached a maximal amplification at the axial location x = 11R 
and decayed further downstream. In order to ensure linearity, Moore (1 977) performed 
experiments at  much lower forcing levels and found that the fluctuating intensities 
exceeded those of Crow & Champagne. Experiments at various radial positions are 
reported by Chan (1977). In  agreement with his theoretical considerations, he found 
the spiral modes (with helicity numbers m equal to one and two, respectively) for 
St = 0.5 to be excited less strongly than the corresponding axisymmetric disturbances. 
Spectral measurements of different modes were performed by Armstrong (1977), who 
showed that the first spiral mode is the dominant instability in the centre of the 
boundary layer. In agreement with the results of Chan, exceptions to this were 
found in a comparatively narrow range of frequencies around St = 0.5. 

As regards theoretical investigations of jet instability, a quasi-parallel theory was 
formulated by Michalke (1971) and indicated that axisymmetric as well as spiral 
modes exhibit growth rates of equal order of magnitude. Using a multiple-scales 
method Bouthier (1972) developed a theoretical framework for dealing with slightly 
non-parallel flows. Later, Crighton & Gaster (1976) analysed spatial growth of axi- 
symmetric disturbances in slowly diverging jets. They indicated that the growth 
rates and the phase speeds depend on the axial as well as on the radial positions and 
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that they are different for the various disturbance quantities. By comparison with the 
experiments of Crow & Champagne and of Moore, they were able to support their 
theoretical findings. 

The multiple-scales method yields a cumulative description of the effect of jet 
divergence and seems to be a more satisfying theoretical way to include the influence 
of jet spreading than the energy integral method proposed by Chan. 

Because of the theoretical results of Michalke and the experimental results obtained 
by Armstrong, it is of interest to examine non-axisymmetric modes. We tackle this 
problem by an extension of the multiple-scales method and restrict ourselves to the 
axisymmetric modes and the first two helical modes. 

2. Analysis 
We use cylindrical co-ordinates (x, r,  #). The mean flow is given by 

[Vx(X, r ) ,  EU,(X, 019 

where X = ex is a slow co-ordinate and e is a small parameter characterizing the jet 
divergence. The linearized inviscid disturbance equations are 

( a p t  + N )  .j: + N'U, = - ap'/ax, 

(a/at  + N) U; + eN'U, = - ap'/ar, 

(a/at + N + eUr/r) U; = - r-lap'/a$ 

(1) 

(2) 

(3) 

( N  = eUr a/& + U, a/ax and N' = u: a/ar + uj, alax) and a further equation is given by 
the familiar equation of continuity. According to Bouthier, we introduce a fast 
variable s = g(X) / c ,  which plays the same role for slow divergence as x does in parallel 
flow. Hence if we define H = (u;, u:, ui, p ' )  then 

H(X, s, r ,  $, t )  = [ F ( X ,  r )  + eG(X,  r )  + . ..I exp { i [g (X) / e  + m$ -PtI}, (4) 

with F = (F,, F,, F,, F,) and G = (Gx, G,, G,, G p ) .  Insertion of (4) into (1)-(3) yields 
at  leading order ( € 0 )  

i(aUx-P)Fx+ Uj,Fr = -iaFp, ( 5 )  

and 
i(aUx-P)Fr = -F '  P 

i(aUx - p)  F, = - imFp/r, 

where we have put a = dg(X) /dX and use a prime to denote a/&. Since X plays the 
role of a parameter in ( 5 ) - ( 7 ) ,  these equations are those of a locally parallel flow and 
neglecting the higher correction in (4) we may write 

H = A ( X )  Fo(X ,  r )  exp - a ( X ' )  dX' + i(m$ -Pt )  , (8) (% 1: 1 
where Fo denotes the solution vector of the locally parallel problem and F ( X ,  r )  = 
A ( X ) F o ( X ,  r ) .  If we use the equation of continuity in ( 5 ) - ( 7 )  to eliminate all 
variables in favour of the pressure, we get 

FOd'+[l/r-2U~/(Ux-c)]F0,'-(m2/r2+a2)F0, = O (c = PIG) .  (9) 
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Since U, vanishes very rapidly as r -+ 0 [cf. (24)] we get from (9) an eigenfunction 
finite a t  r = 0: 

F$ -+ CIvb(ur) as r -+ 0, (10) 

where I, denotes the modified Bessel function of order m. The constant of integration 
C has to be fixed by a convenient normalization. While for m = 0 we use the same 
normalization as Crighton & Gaster, for m = 1 we demand F!(r = 0 )  = 1, which 
yields C = 2i(c- 1). Finally, we use F: .+ r as r --f 0 or C = 4i(c- l ) / a  for m = 2 .  
The adjoint eigenfunction is given by 

pE = rF$/(  Ux - c ) ~ .  
At order €1, (1)-(4) give 

Finally, the equation of continuity leads to 

(rG,)‘/r + imG+/r + iaG, = - aFx/aX. (15) 

A straightforward elimination procedure then yields 

LG, = -T ,  

where L is the differential operator on the left-hand side of (9) and the linear functional 
T is defined by 

( r ~ ~ ) ’ + i n ~ g ]  +(v,Fo,)” 

According to theorems for inhomogeneous eigenvalue problems, (16) has a solution 
satisfying the boundary conditions if and only if 

By an inspection of (17)  this condition yields an equation for the slowly varying 
amplitude A (X) : 

In  the following we use the abbreviation V = l / (Ux  - c). Now, by putting 1 = I, + I ,  
and using (5)-(7) and (9), we can write 

k ( X ) d A / d X + l ( X ) A ( X )  = 0. (19) 

Z,(X) = - - dr rFOd V3{ [ U i  + ( V U;  - 1 / r )  U,] F r  
U 

(20) 

1: 
+ U,[2(m2/r2 + a2) + V (  U i  - UL/r)] FOp} 

a-2 
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and 

I,(X) = i som dr i?, ( 2a(Dx $ - VF: D, U,) + (F; + 2 c q  U, Uh V3/u2)  D, a 

V 2  Po‘ 2 
+; [ - -$D,UL-~CU,D Po’ p ]  +- a V 3 U ~ 3 ’ g ( 2 c - U x ) D x  Uz) ,  (21) 

where D, = a/aX.  Note that lI describes the influence of the transverse velocity U,, 
whereas I, describes the effect of the streamwise variation. Finally, the coefficient of 
A ’ ( X )  in (19) is given by 

k ( X )  = 2i som p’ [aF: - cUk V2Fg/a ]  dr. ( 2 2 )  

Returning to (19) and considering (8)) we may write 

(1: [! a(X’ ) - l (X’ ) / k (X’ )  dX’+i(m$-Pt) , H = AoFo(X,  r )  exp (23) 

where A ,  is an arbitrary constant of integration. Now it is easy to see that, each flow 
quantity (velocity, pressure, etc.) has its own growth rate. Furthermore, we may 
define local growth rates and phase speeds in the manner described by Crighton & 
Gaster, and in the appendix we show how to derive from (20) - (23)  the corresponding 
formulae for axisymmetric disturbances (m = 0 ) ,  which are also obtained by Crighton 
& Gaster. 

For the mean velocity profile we use a form which was established by Michalke and 
later extended to the case of slowly diverging jet by Crighton & Gaster. This is given by 

1 I 

with 

U, = 0.5 ( l + t a n h  [b(x)  (s-i)]), ( 2 4 )  

( 2 5 )  

whereby the momentum thickness 8 is given by B(x)/R = 1 / 4 b ( x ) .  If we assume that 
the rate of divergence is characterized by 0 we can write 

8 = dB/dx = 0.03. ( 2 6 )  

If we calculate the transverse mean velocity V ,  = eV, by means of numerical integration 
of ( 2 4 )  and if we put eD, = a / a x ,  we may reformulate (23) and get by elimination of 
the formal expansion parameter e 

H = A,FO(z, r )  exp [ia(x‘) - Z(x’) /k(x’)]  dx’ + i(m$ -pt) (27) 

whereby U, must be replaced by V,  in (20). Seemingly, the second term in the exponen- 
tial function in (27) plays the role of a small correction, and its neglect reduces (27) 
to  a form proposed by Chan (1977). Since the magnitude of this term depends on the 
normalization of the eigenfunction, its omission is in general not justified. 

3. Numerical results and discussion 
We used a Runge-Kutta scheme and a modified Simpson routine. For the radial 

integrations, a minimum step width of h = 0.005R was found to ensure a sufficient 
degree of accuracy. The initial point xo of the axial integrations was arbitrarily chosen 



Helical instabilities of slowly divergent jets 213 

1 Ot 

6C 

4c 

20 

10 

6 

4 

2 

1 
0 2 4 6 8 10 12 

xlR 

FIGURE 1. Gain pressure at centre of boundary layer. 
-, m = 0 .  --- m = 1; -.-, = 2. I ,  

to be x,, = 0 and in order to eliminate the constant A ,  [cf. (23)l; the growth rates are 
referred to their values a t  x = 0. Furthermore, because of remarkable numerical 
difficulties, we stopped the integrations a t  axial positions where the inviscid theory 
still allows the determination of the eigenvalues. 

In earlier measurements by Chan (1974) it  was found that for higher values of the 
Strouhal number the disturbances are confined to the first part of the jet near the 
nozzle and that the Strouhal number of the maximally amplified modes is different 
for different radial locations. In  the centre of the jet Chan reported a value of St = 0.35, 
while on the centre-line of the boundary layer (r  = R )  the preferred Strouhal number 
is about 0.5. 

These experimental findings are in close agreement with our theoretical predic- 
tion for the pressure gain in the centre of the boundary layer plotted in figure 1. 
From this plot we can see that modes with higher Strouhal numbers suffer a higher 
gain and that these modes decay under the influence of the viscosity at  axial posi- 
tions where modes with lower St are still growing. As regards the influence of the 
helicity number, we find that for St  = 0.5 the axisymmetric mode is more amplified 
than the first spiral mode. This result is consistent with the theory and th.3 experi- 
ments by Chan (1977, figure 9)) where the maximal gains for the axisymmetric mode 
and the first two spiral disturbances are found to be in the neighbourhood of the axial 
locations x / R  = 4, x / R  = 3 and x /R = 2, respectively. A comparison of our numerical 
data with values roughly extrapolated from the curves of Chan (1977) indicates that 
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FIGURE 2 .  Phase speeds of pressure waves in the centre of the boundary layer. 
x l R  

-, m : 0; ---, na = 1. 

our results overshoot the experimental ones of Chan by a factor of the order of 20 yo 
a t  the position x/R = 3. This discrepancy might be explained by the comparatively 
high forcing level irr Chan’s experiments. 

If we consider the pressure gain of modes excited a t  lower Strouhal numbers 
(St = 0.3), we find that the first spiral mode suffers a greater pressure gain. This 
becomes more marked a t  positions further downstream, where the pressure gain of 
the axisymmetric mode reaches its maximum while the first helical mode continues 
t o  grow. This result is in good agreement with experimental measurements of co- 
spectral densities of pressure fluctuations in the centre of the boundary layer per- 
formed by Armstrong (1977) .  There the preferred Strouhal number was shown to 
take the value St = 0.45, and for this particular Strouhal number the axisymmetric 
mode is the dominant disturbance, while for all other values of St the first spiral 
mode was found to be the most excited instability. 

Finally, we may state that  within the range of Strouhal numbers of interest to  
experimentalists both the axisymmetric mode and the first helical mode suffer a 
pressure gain of equal order of magnitude. Since the Strouhal number St = 0.3 is 
supposed to  be the preferred one a t  the centre-line, we may expect that  the transverse 
components of the first spiral mode and the pressure and the axial component of the 
axisymmetric disturbance are dominant there. While in an intermediate regime 
(r  BR) both disturbances are of equal importance, we suppose that, because St 0.5 
is the expected value of the Strouhal number in the centre of the boundary layer, the 
axisymmetric modes become the most amplified disturbances in a region around 
r = R. 

The phase velocity of the pressure waves is defined by 

and is plotted in figure 2 for the case Y = R. From this we may see that, in agreement 
with experiments by Chan (1  974), the phase velocity decreases with increasing 
Strouhal number. Furthermore, in analogy with the results of the local parallel 
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theory (Michalke 1971) and in close resemblance to  the trends found in experiments 
by Chan (1977))  the helical modes (the phase velocities of the mode m = 2 are slightly 
below the ones of the mode with m = 1) exhibit essentially lower values of the phase 
velocity. 

The author wishes to thank Prof. D. Crighton, University of Leeds, for a few helpful 
comments. 

Appendix 
In the case of axisymmetric disturbances we may describe the quantities of the 

local parallel theory in terms of a stream function $O(x, r ) .  Then the pressure is defined 

by 
F: = - [( U, - c )  $O' - Uk $O]/r, 

(U, - c )  (d2 - a2) $0 - (dZU,) $0 = 0, 

(28) 

( 2 9 )  

and instead of ( 9 )  the disturbance equation is 

where d2 = d2/dr2 - r - ld ldr .  We now show the consistency of our theoretical results 
for the case of axisymmetric modes with the theory of Crighton & Gaster with respect 
to the function k(x), only. The transformation of the function l(x) follows the same 
lines. Introducing ( 2 8 )  into ( 2 2 ) )  we may write 

With the aid of a partial integration and by using (as),  we can transform the first 
term on the right-hand side of (30). Equivalently, partial integration of the second 
term yields 

k ( x )  = - ia~~mdr~[2a2(U,-c) -c (d2U,) / (U, -c)]  #O (311 

($0 = $O/[r(U, - c ) ] ) .  Apart from the pre-multiplier on the right-hand side, this is the 
formula presented by Crighton & Gaster (cf. equations (2 .18) ,  (2 .23a)  and (2.13) in 
their paper). Since this premultiplier will appear in the function Z(x) too, its influence 
will cancel. 
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